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On the history of martingales in the study of
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Abstract

Martingales played an important role in the study of randomness in the twentieth
century. Jean Ville invented martingales in the 1930s in order to improve Richard
von Mises’ concept of a collective, and Claus-Peter Schnorr made martingales algo-
rithmic in the 1970s in order to advance the study of algorithmic randomness.
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1 Introduction

Jean Ville introduced martingales into mathematical probability in the 1930s in order
to improve Richard von Mises’ concept of a random sequence, or collective. When the
study of random sequences was revived by Andrei Kolmogorov and others in the 1960s,
martingales again found their place.
In its broadest outlines, the story we tell here is about the different approaches to

the definition of an individual random sequence. Richard von Mises proposed to define
this notion in terms of limiting frequency and selection rules. Then Ville showed that
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martingales (capital processes for gambling strategies) do the job more completely than
selection rules (with respect to classical probability theory).
The contributions of von Mises, Ville, and Abraham Wald in the 1930s (and the

notion of an individual random object in general) were neglected in the 1940s and 1950s,
because measure proved a more expeditious way of modernizing classical probability.
Probability theory’s predictions are events to which it gives measure (probability) near
or equal to one, and whose failure therefore has measure near or equal to zero – and why
say more? Misbehaving frequencies and unbounded martingales are merely examples of
sets of measure zero.
In the 1960s, tools from the theory of computation permitted the revival of the study of

randomness. Kolmogorov (and later Gregory Chaitin) proposed to define random objects
as objects of maximal complexity. Per Martin-Löf showed that the notion of measure zero
can also be made algorithmic. His work on algorithmic measure zero inspired Schnorr’s
work on algorithmic martingales. The relations between the definitions of randomness
that use complexity, effective measure and martingales were established in the 1970s by
Schnorr, Levin and others. These results now form the basis of algorithmic randomness
theory.
We begin the article by reviewing the contributions of von Mises, Wald, and Ville.

Von Mises first introduced collectives in 1919. In Section 2, we recall the concept and
von Mises’ motivation for introducing it. In Section 3, we review how Wald, writing in
the 1930s, clarified the concept and demonstrated its consistency. In Section 4, we review
how Ville, in the thesis and book he published in 1939, defined a stronger concept based
on martingales.
After pausing, in Section 5, to consider how collectives fell out of fashion in the

1950s, we describe developments in the 1960s and 1970s. In Section 6, we review the
invention of the concept of algorithmic complexity and describe work by Ray Solomonoff,
Kolmogorov, and Chaitin in the 1960s. In Section 7, we explain how Martin-Löf came
to define randomness for infinite sequences in the mid 1960s. In Section 8, we review
Schnorr’s introduction of algorithmic martingales around 1970. In Section 9, we discuss
semimeasures, introduced by Levin in a paper with Zvonkin in 1970, and their relation to
martingales. Finally, in Section 10, we discuss how Schnorr and Levin related randomness
to complexity using monotone complexity (discovered by Schnorr and Levin) and prefix
complexity (introduced by Levin and rediscovered and made popular by Chaitin).
In a brief epilogue, Section 11, we say a few words about subsequent developments in

algorithmic complexity and martingales, particularly those related to von Mises’ original
project of providing a foundation for probability and its applications.
In addition to published sources, we have drawn on interviews with Peter Gács, Leonid

Levin, and Per Martin-Löf, and on discussions at a meeting at Dagstuhl in late January
and early February 2006. Marcus Hutter recorded historical talks at Dagstuhl by Chris-
tian Calude, Claus-Peter Schnorr, and Paul Vitányi and posted them at http://www.hut-
ter1.net/dagstuhl. We have also profited from discussions with Leonid Bassalygo,
Vladimir Uspensky, Vladimir Vovk, Vladimir Vyugin, and others. In an appendix, we re-
produce several documents on which we have drawn: a letter from Andrei Kolmogorov to
Maurice Fréchet, abstracts of talks by Kolmogorov at the Moscow Mathematical Society,
and letters from Levin to Kolmogorov.
A preliminary version of this article [4], by Laurent Bienvenu and Alexander Shen,
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contains additional information about the history of algorithmic information theory; see
also [75].

2 Richard von Mises’ collectives

In a celebrated article published in 1919 [53], Richard von Mises (1883–1953) raised a
question that was widely discussed during the following twenty years: how can we give a
mathematical account of the notion of an individual random sequence?
The problem of deciding whether a particular sequence is random was hardly novel

in 1919. Should we disbelieve the fairness of a lottery if we repeatedly observe that the
winning numbers are always even? If we see letters on a table arranged to spell ROMA or
CONSTANTINOPOLITANENSIBUS, can we rule out the arrangement having happened
by chance? Aren’t these orderings as likely as any others? Such questions were debated
by d’Alembert, Condorcet, and Laplace in the eighteenth century [15], and they were
taken up in nearly every treatise on probability in the nineteenth century.
But von Mises, who was a philosopher as well as an applied mathematician [76], had

a new idea. He believed that random sequences should be considered the subject matter
of mathematical probability, just as lines and planes are the subject matter of geometry.
The axioms of probability theory should therefore be statements about the properties of
random sequences, or collectives (Kollektiv in German). In order to construct a simple
mathematical theory, we should take these random sequences to be infinite, von Mises
thought, just as Euclid and Hilbert took lines and planes to be infinite.
Von Mises formulated two axioms for collectives. For simplicity, we state them for a

collective with two values, e.g., a sequence of heads and tails obtained by coin tossing:
I. There exists a limiting frequency: if sN is the number of heads among the first N

coin tosses, the ratio sN/N converges to some real number p as N tends to infinity.
II. This limiting frequency is stable: if we select a subsequence according to some

selection rule, then the resulting subsequence (if infinite) has the same limiting frequency.
A selection rule is a mathematical rule that decides whether a term is selected or not
using only the values of the preceding terms but not the value of the term in question.
For example, a selection rule may select terms whose numbers are prime, or terms that
immediately follow heads in the sequence, but not the terms that are heads themselves.
Axiom I made sense to mathematicians as a result of work by Émile Borel in 1909 [5].

Borel had shown that convergence of sN/N to a limit can be expected with probability
one in the case of independent trials. This limit is, of course, the probability for heads.
Axiom II is also persuasive. Suppose someone tells you that flipping a coin produced the
sequence

10101010101010101010101010101 . . .

where 1 (heads) and 0 (tails) alternate. Would you believe this? Probably not. The
limiting frequency of 1s in this sequence exists and is equal to 1/2. But the sequence is
too regular. This is where axiom II comes in: if one selects from this sequence the bits
in even positions, one gets the sequence

1111111111111111111111111111 . . .

in which the frequency of 1s is different (1 instead of 1/2). We can win for sure by betting
only on the trials in this subsequence. By ruling this out, von Mises explained, the second
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axiom expresses a classical principle, the principle that excludes systems for beating the
odds.
According to von Mises, probability theory is about the properties of collectives and

about operations that transform collectives into other collectives. He used the following
example: take a collective (a sequence of 1s and 0s) and cut it into 3-bit groups. Then
replace each group by an individual bit according to majority rule. Probability theory
has to find the limiting frequency of the resulting sequence if the limiting frequency of
the original one is known.
When he launched the concept of a collective, von Mises was already prominent be-

cause of his work in mechanics; he was director of an institute of applied mathematics at
Berlin starting in 1920. But he devoted a good deal of his subsequent career to promoting
collectives. His book on the topic, Wahrscheinlichkeit, Statistik und Wahrheit, first ap-
peared in 1928 [54] and subsequently saw multiple editions in German and in English. In
1931 he published a textbook on probability and statistics based on collectives [55]. After
fleeing from Berlin to Turkey in 1933, he emigrated to the United States in 1939, where
he became a professor at Harvard. His later publications on probability include a debate
with the United States mathematician Joseph Doob in September 1940 at a meeting of
the Institute of Mathematical Statistics, published in 1941 [57, 58], and a posthumous
book edited by his widow, Mathematical Theory of Probability and Statistics [59].
Von Mises realized that he had not demonstrated the logical consistency of his ax-

ioms or the existence of sequences satisfying them. But he managed to gain sufficient
attention for his ideas that others undertook these tasks. Among them were the United
States mathematician Arthur Copeland (1898–1970) and the German philosophers Hans
Reichenbach (1891–1953) and Karl Popper (1902–1994). Reichenbach was a colleague of
von Mises in Berlin and also emigrated to Turkey and then to the United States. Popper
was Viennese; he emigrated to New Zealand in 1937 and then to England in 1949. The
three authors, Copeland in 1928 [16], Reichenbach in 1932 [65], and Popper in 1935 [64],
made suggestions that turned to out to be equivalent to each other and closely related
to the concept of a normal number, already developed in Borel’s 1909 article. Their
suggestions boiled down to requiring von Mises’ axiom II only for selection rules that
select just the trials for which the r preceding trials, for a specified r, match a specified
string of 1s and 0s of length r. It is easy to give an algorithm for constructing sequences
whose limiting frequencies are not affected by such selections, and for this very reason,
von Mises did not consider this solution satisfactory. In von Mises’ eyes, a sequence that
can be predicted could not be considered random.
For fuller reviews of the work stimulated by von Mises during the 1920s and 1930s,

see Martin-Löf [48] and Chapter 6 of von Plato [63]. These authors discuss in particular
the work of Erhard Tornier, who proposed replacing von Mises’ single random sequence
with an infinite matrix consisting of many sequences that might result from an infinite
sequence of trials. William Feller collaborated with Tornier.

3 Abraham Wald’s clarification

It was Abraham Wald, the star of Karl Menger’s mathematical seminar in Vienna, who
reformulated the second axiom in a way that satisfied von Mises.
Karl Menger (1902–1985), son of the Austrian economist Carl Menger, was loosely
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associated with Moritz Schlick’s seminar on the philosophy of science, which became
known in retrospect as the Vienna circle. After earning his doctorate in mathematics
in 1924, Menger worked for two years with L. E. J. Brouwer in Amsterdam before re-
turning to Vienna, where he eventually obtained a post in the university and organized
his own seminar on mathematics. For eight years, from 1928–29 through 1935–36, the
seminar’s proceedings were published as a journal, the Ergebnisse eines Mathematischen
Kolloquiums.2
Prominent contributors to the seminar included Nachman Aronszajn, Kurt Gödel,

Marston Morse, John von Neumann, Albert Tarski, and Norbert Wiener. The most
important contributor was Menger’s most brilliant student, Abraham Wald (1902–1950).
Wald was the same age as Menger but was a latecomer to the university. He had been
born in Transylvania, where his father was an orthodox Jewish baker, and the family
had come to Vienna after the Romanian annexation of the region during World War I.
Unable to study at the Vienna gymnasium, he passed the examination for entrance to
the university after attending an engineering school and being tutored by his brother
in mathematics [60, 90]. But by the time he completed his doctorate in 1931, he was
contributing to almost every topic in the seminar. Because his religion barred him from
a university post of his own, he continued to contribute to the seminar while earning a
living in Oskar Morgenstern’s economics institute, until the worsening political situation
forced Menger to end the seminar in 1936.
Collectives came into Menger’s seminar by way of Schlick’s, where Menger had heard

Karl Popper present his ideas on collectives. Menger asked Popper to come to his own
seminar to give a more precise mathematical explanation [52]. Popper did so on February
6, 1935, and Wald immediately responded with a proposal of his own.
A selection rule, in the case of a sequence of 1s and 0s, can be thought of as a

function s from {0, 1}∗ to {0, 1}, where {0, 1}∗ is the set of all finite strings of 1s and
0s. Applying s to an infinite sequence ω1ω2 . . . means that we select all terms ωi such
that s(ω1ω2 . . . ωi−1) = 1; the selected terms are listed in the same order as in the initial
sequence. For those who accept a nonconstructive concept of mathematical existence,
there obviously exist s that change the limiting frequency of 1s in a particular ω1ω2 . . ..
There are many s, for example, that select just the terms for which ωi = 0, thus changing
the limiting frequency to 0, and others that select just the terms for which ωi = 1,
thus changing the limiting frequency to 1. But Menger and his seminar were attuned
to Brouwer’s constructivism and to the developments of the day in logic, and so when
Wald thought about functions from {0, 1}∗ to {0, 1}, he did not necessarily consider all
functions that exist in a nonconstructive sense. He thought it might be appropriate
instead to consider only functions that can be constructed in some particular system
of arithmetic. There will not be so many of these functions, because a logical system
can have only a countable number of symbols, and from these we can construct only a
countable number of formulas. The question, therefore, is whether there exist sequences
that have an invariant limiting frequency with respect to the countable set of selection
rules that can be constructed in a given system, and if so, in what sense these sequences
can themselves be constructed.
Wald’s first publication on the topic was a note in French in the Comptes rendus in

2In 1998, Springer reprinted the proceedings, along with several introductory articles in English, in a
single volume [19].
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Paris [84], submitted by Émile Borel for the session of January 20, 1936. In this note,
Wald asserts without proof the existence of collectives when the number of selection rules
is countable. Like von Mises, he considers more than the binary case, but with respect
to the binary case, his assertion says that for any countable family of selection rules and
for any p ∈ (0, 1) there exist a continuum of sequences that satisfy axioms I and II with
limiting frequency p.
This result by itself (the Comptes rendus note says nothing about constructivity) was

hardly surprising even at the time. Classical probability theory, modernized by Borel in
1909 [5], Maurice Fréchet in 1915 [23], and Andrei Kolmogorov in 1933 [29], had taught
mathematicians that the disjunction of a countable number of events of probability zero
itself has probability zero. It is obvious (and was proven rigorously by Doob in 1936 [20])
that if you apply a selection rule s to a sequence of independent random variables ω1ω2 . . .,
each equal to 1 with probability p and to 0 with probability 1 − p, then you obtain a
subsequence that has the same distribution (let us call it the Bernoulli distribution with
parameter p). Borel had shown that the probability is zero that the frequency of 1s in a
realization of the Bernoulli distribution with parameter p fails to converge to p. So the
probability is also zero that any of the countable number of subsequences obtained from
a countable number of selection rules fails to converge to p. The complement of this event
has probability one and therefore has the cardinality of the continuum.
In a footnote, Wald says that he will give proofs in the seventh volume of Menger’s

Ergebnisse, the volume for 1934–35. But the article containing these proofs appeared
instead in the eighth and final volume, for 1935–36, which did not appear in print until
1937 [85]. Written in German, this article also gives the explanation, missing from the
Comptes rendus note, that an insistence on constructivity justifies the consideration of
countable systems of selection rules. The article uses what we now consider an informal
concept of constructivity: a sequence a1a2 . . . was considered to be constructively (or
effectively) defined if for each ai there is a procedure for determining the value of ai in a
finite number of steps, but it was not clear what was meant by a procedure, whether the
procedure might depend on i, etc. Wald shows that for a countable system of construc-
tively defined selection rules, there exists a constructively defined collective (Theorem V,
p. 49). He does this by constructing the collective recursively from the selection rules. In
modern terminology, he uses the selection rules as oracles.
Let us explain Wald’s recursion in the simple case where we consider only a finite

system of selection rules, say a set S consisting of n selection rules, and we want to
construct a collective ω consisting of 1s and 0s with limiting frequency 1/2. Suppose
we have constructed ω1 . . . ωi−1 and now want to specify ωi. Let Si be the subset of S
consisting of the rules in S that will include the ith entry of ω in the subsequence they
select when applied to ω:

Si = {s ∈ S | s(ω1 . . . ωi−1) = 1}.

Because we have already constructed ω1 . . . ωi−1, we have determined Si and also the
preceding Sj (those for 1 ≤ j < i). Let ki be the number of the preceding Sj that are
equal to Si, and set

ωi =


1 if ki is even,
0 if ki is odd.
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(In particular, ω1 = 1, because k1 = 0; there are no j satisfying 1 ≤ j < 1.) If we fix a
subset A of S and select from ω the subsequence consisting of the ωi for which Si = A, we
get the alternating sequence 101010 . . . . By considering the 2n different subsets A of S,
we partition ω into 2n subsequences, all equal to 101010 . . . . Each of these has limiting
frequency 1/2, and so ω does as well. If we apply a selection rule s ∈ S to ω, we pick up
the entries in half these 2n subsequences, those corresponding to the subsets of S that
contain s, and the limiting frequency will still be 1/2.
The construction for countably many selection rules builds on this simple picture: we

add new rules one by one at intervals so great that the boundary effects cannot affect the
limiting frequency.
Wald considers not only collectives with entries drawn from {0, 1}, but also collectives

drawn from any finite set (Theorem I, p. 45). He also considers collectives with entries
drawn from an infinite set M (Theorems II–IV, pp. 45–47). He finds, as Copeland had
found using his more restrictive concept of a selection rule, that the theory works if M is
countable or if one considers only a restricted class of events, e.g., those that are Peano-
Jordan measurable. Wald’s Theorems V–VI (p. 49) observe that the resulting collectives
can be effectively constructed.
In October 1937, Wald presented his results in a celebrated colloquium on probability

at Geneva. This colloquium, chaired by Maurice Fréchet, brought together most of the
world’s leading probabilists for the last time before the war. In addition to Wald and
Fréchet, attendees included Harald Cramér, Wolfgang Doeblin, William Feller, Bruno
de Finetti, Werner Heisenberg, Eberhard Hopf, Bohuslav Hostinsky, Paul Lévy, Jerzy
Neyman, George Polya, and Hugo Steinhaus. The session on foundations was remembered
for its lively discussion of collectives, which were criticized by Feller, Fréchet, Lévy, and
others. The second installment of the proceedings, published in 1938, included articles
on collectives by Wald [86] and von Mises [56]. Wald, still writing in German, stated
the theorems he had proven in his Ergebnisse article and refuted some of the criticisms.
Von Mises, who had not been at the colloquium but wrote in French, embraced Wald’s
analysis fully, seeing it as a vindication of his confidence that his axioms were logically
consistent.
Wald and von Mises both took a practical tone. They considered probability an ap-

plied field. A mathematical theory of probability can involve idealization, such as the
consideration of infinite sequences instead of long finite ones, but the test of its adequacy
should be whether it covers important applications. In any particular application only
finitely many selection rules can be relevant. Wald pointed to a logical system of arith-
metic permitting the formulation of only countably many selection rules not because he
imagined using so many, but to make the point that no one could conceivably need a
collective to do more.
Wald’s introduction of constructivity into the discussion of collectives coincided with

a debate among logicians concerning how this notion should be made precise. The debate
was motivated by David Hilbert’s question of whether there exists a procedure for sepa-
rating mathematical truths from falsehoods, and it was eventually settled by a consensus
around Church’s thesis, the thesis that effective calculability should be identified with a
precise concept that had been given different but equivalent definitions by Alonzo Church
and his students, Gödel, and Alan Turing (see, e.g., [17]). In 1940 [14], Church suggested
using this new precise concept of effective calculability, now usually called simply com-
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putability, to define collectives. Under Church’s definition, a sequence of 1s and 0s is a
collective with probability p if the limiting frequency of 1s is p in the sequence and in
any subsequence selected by a computable selection rule. With this definition, as Church
explained, the existence of collectives can be proven nonconstructively, following Wald
or using Doob’s result. But a collective cannot be constructed, because the set of all
computable selection rules, while countable, is not effectively enumerable. (It is a subset
of a set that can be effectively enumerated, but it cannot be effectively enumerated itself.)

4 Jean Ville’s martingales

Jean André Ville (1910-1989) was a participant in Menger’s seminar when Karl Popper
and Abraham Wald gave their talks on collectives in February 1935. The most brilliant
of the first students to earn the degree in probability that Fréchet introduced at the
University of Paris in 1931, Ville had been awarded scholarships to study in Berlin in
1933–34 and in Vienna in 1934–35. Fréchet had sent Ville to Berlin to get started on a
doctoral thesis in analysis, but Ville was more interested by the new mathematics and
new applications he encountered in Menger’s seminar, and he was particularly fascinated
by collectives.
As a student in France, Ville had learned a way of thinking about the application of

probability theory that was quite different from that of von Mises. According to Cournot’s
principle,3 which was popular among French probabilists when Ville was a student, prob-
ability theory makes contact with the empirical world only by making predictions with
probability near or equal to one. The law of large numbers is one such prediction: the
frequency of 1s in a sequence of tosses of a fair coin will converge to 1/2. The law of
the iterated logarithm is another: the frequency will oscillate around 1/2, converging at
a certain specified rate. From this point of view, von Mises was too exclusively focused
on the convergence of frequencies. What about the other predictions probability theory
makes with probability one? Will collectives in von Mises’ sense also satisfy them? Not
necessarily, Ville concluded. There are some probability-one predictions that we cannot
guarantee a collective to have through our choice of the system of selection rules. Or to
put the point positively, there are properties with measure zero that will be possessed by
some collective no matter what system of selection rules we adopt.
Ville first made his point in the Comptes rendus in July 1936 [81], in a concise note

without examples or proofs that considered only the familiar case of collectives consisting
of 1s and 0s with limiting frequency 1/2. Under the Bernoulli measure, the sequences
that are not collectives with respect to a given countable system of selection rules have
measure zero. But, Ville asserted, not every property of measure zero can be ruled out
in this way. He further asserted that this shortcoming of collectives can be corrected by
replacing the system of selection rules by a martingale, i.e., a betting strategy.4 Ville
considered strategies satisfying the following conditions:

Ville’s conditions. (1) You start with unit capital. (2) At every trial, you bet
3For a history of Cournot’s principle and examples of statements embracing it by Jacques Hadamard,

Paul Lévy, Maurice Fréchet, and Émile Borel, see [72]. The principle was named after Cournot by Fréchet
around 1950.

4For centuries the word martingale has referred to the strategy for betting that doubles one’s bet after
every loss. See Roger Mansuy’s article in this issue of the Electronic Journal for History of Probability
and Statistics.
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only a fraction α of your current capital, where 0 ≤ α ≤ 1, on 1 or on 0, so
that your capital will remain nonnegative no matter how the trial comes out.

It is easy to show that the resulting capital will remain bounded with probability one.
So there exist a continuum of sequences for which it remains bounded; we may call these
collectives with respect to the betting strategy. Ville asserted without proof that for any
property E to which the Bernoulli measure assigns measure zero, there exists a strategy
satisfying his conditions for which the capital is unbounded if E happens. Thus we can
rule out any property of measure zero for our collectives by properly choosing the strategy.
For those not steeped in the philosophy of the French probabilists, or for whom prob-

ability could only mean frequency, Ville’s results may not have seemed well motivated.
William Feller, in a two-sentence review in Zentralblatt (Zbl 0014.16802), summarized
what Ville claimed to have proven while making it clear that he could not figure out why
Ville should want to prove it.
Ville’s ideas received a fuller hearing the following year, when Fréchet presented them

to the colloquium at Geneva as part of a wide-ranging argument against collectives and
in favor of the axiomatic approach perfected by Andrei Kolmogorov. In Fréchet’s contri-
bution to the colloquium’s proceedings [24], published in 1938, we see for the first time in
print an example of a property of measure zero that cannot be ruled out by a system of
selection rules. Probability theory tells us that the frequency of 1s should oscillate above
and below 1/2 as it converges to 1/2. But a collective need not have this property. Its
frequency can instead approach the limit from above, for example. It is instructive to
point out (although Fréchet did not) that this happens in the construction by Wald that
we reviewed in Section 3. The sequence constructed there is the result of interleaving
many copies of the sequence 101010 . . . , and because the frequency of 1s in any prefix
(finite initial segment) of each copy is always greater than or equal to 1/2, this must also
be true for the whole sequence. This shows that no matter what countable system of
selection rules we adopt, there will be a collective in which the frequency converges to 1/2
from above. We cannot force the frequency to oscillate above and below 1/2 as required
by the law of the iterated logarithm by a clever choice of the selection rules.
Wald stood his ground. At Geneva, he protested that those who had criticized the

theory of collectives for excluding some sequences were now criticizing it because it did
not exclude enough sequences ([24], p. 35). In his contribution to the proceedings [86], he
questioned whether every asymptotic property should be accorded the same significance
as the convergence of frequencies.5 Then, conceding that strengthening the concept of a
collective so as to guarantee other asymptotic properties is of some interest, he proposed
a way to do this while preserving von Mises’ emphasis on frequencies. Call a selection
rule singular if the sequences of 1s and 0s for which it produces infinite subsequences
have total measure zero, he proposed, and call a collective ω with respect to a countable
system S of selection rules strong if no singular selection rule in S produces an infinite
subsequence when applied to ω. There exists a continuum of strong collectives for any
countable system of selection rules.6 For every property A of probability zero, there is a

5An asymptotic property of ω1ω2 . . . is one that does not depend on any finite prefix. In 1933 [29],
Kolmogorov had shown that the probability of an asymptotic property is either zero or one.

6In the case of the singular rules, the sequence must be outside the set of probability zero on which
the rule produces an infinite subsequence; in the case of the nonsingular rules, it must be outside the set
of probability zero on which the rule produces a subsequence that does not converge to 1/2.
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singular selection rule that produces infinite subsequences when applied to sequences in
A; so by adding this selection rule to S, we can guarantee that every strong collective
avoids the property A. And we can do this for countably many A.
Fréchet expressed his admiration for Wald’s ingenuity but objected that the new

concepts weakened the simplicity that made von Mises’ picture attractive. We might
add that they threaten to push frequencies out of the picture. Why not make all the
selection rules singular, and why not combine all the asymptotic properties we want,
including the frequency properties, into one property A, to be enforced by means of just
one singular selection rule? It takes only one more step to get us to Ville’s picture:
Define the singular selection rule using a strategy whose capital process is unbounded
on A. For example, include the next bit ωi every time the capital hits a new high. To
the best of our knowledge, neither Wald nor anyone else ever promoted the concept of a
strong collective further.7 Wald was simply marshalling every argument he could think
of against Fréchet’s equally broad offensive.
In March 1938, Hitler annexed Austria. Wald fled from Vienna to Transylvania and

then immigrated to the United States in the summer of 1938; most of his family perished
in the Holocaust. One of his first publications in the United States was a very positive
review, in 1939 [87], of von Mises’ Probability, Statistics, and Truth, the English version
of the second edition of Wahrscheinlichkeit, Statistik, und Wahrheit. The review only
obliquely touched on his own contribution and made no reference to Ville’s. Wald’s
initial employment in the United States was with the Cowles Commission, which had
already offered him a position in 1937, but he quickly moved to Columbia University.
In 1946, he became head of a newly created Department of Mathematical Statistics at
Columbia. By the time of his death in 1950, in an airplane accident in India, he was widely
regarded as the leading voice in mathematical statistics in the world. In an obituary ([90],
p. 13), his colleague Jacob Wolfowitz ascribed to him “an unusual aversion to all forms
of controversy”.
Von Mises, like Wald, was unconvinced by Fréchet’s arguments. He accepted Ville’s

theorem that there exist asymptotic properties that have probability zero under the
theory of denumerable probabilities (this was Borel’s name for the extension of classical
probability theory to infinite sequences of trials) and that are satisfied by some collectives,
no matter what system of selection rules is adopted. But he saw no problem with this –
no reason to modify the theory of collectives to avoid it ([56], p. 66).
As for Ville’s proposal to substitute a martingale for a system of selection rules, it

is not clear that anyone understood Fréchet’s explanation of it. Von Mises admitted
that he did not understand Ville’s theory ([56], p. 66). Wald had not mentioned Ville’s
work in his response to Fréchet, and he seems never to have mentioned it subsequently.
De Finetti, in his summary of the colloquium, incorrectly stated Ville’s definition of a
collective relative to a martingale ([18], p. 22). Decades later, in 1964, Lévy wrote to
Fréchet that he had never quite understood Ville’s definition of a martingale, and that
Michel Loève and Aleksandr Khinchin had told him that they had never understood it
either ([3], p. 292).
Ville might have been better served to speak for himself. But the work on martingales

was his thesis. French practice did not permit him to publish his proofs until the thesis
7However, we may retrospectively note that when we consider computable singular selection rules, we

get exactly the class of Martin-Löf random sequences, see Section 7 below.
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was accepted, and this was delayed by Fréchet’s insistence that he add enough analysis
to make it respectable. He did this during the academic year 1937–38, using the concept
of a martingale to prove new results for stochastic processes in discrete time and trying
to extend these results to continuous time in the framework being developed by Doob.
Borel and Fréchet finally allowed Ville to defend his thesis only in March 1939, on the
eve of World War II. Borel then published it in his series of monographs on probability
[82]. This was a prestigious publication, at least in France, and the book was widely
distributed, though apparently not widely read.
As Fréchet had explained at Geneva, but too cryptically, Ville found it convenient to

work not with the strategies he initially called martingales but with the capital processes
they determine. A strategy tells us how to bet on ωn after seeing x = ω1 . . . ωn−1. In the
usual case of 1s and 0s, this means that it tells us, as a function of x, whether to bet on
ωn = 1 or ωn = 0 and how much to bet. The strategy together with the initial capital
determines, for every finite string x of 1s and 0s, the capital we will have after observing
x, say m(x). The condition that the bets be at even odds dictates that

m(x) =
m(x0) +m(x1)

2
. (1)

Any function m satisfying (1) for every finite string x is a capital process arising from a
strategy and from some initial capital, and uniquely determines that strategy and initial
capital. Because of this one-to-one correspondence, and because capital processes play the
most direct role in his theory, Ville transferred the name martingale from the strategies to
the capital processes. He called any function on finite strings satisfying (1) a martingale.
Ville was particularly interested in nonnegative martingales – martingales that start

with a positive initial capital, say m() = 1, where  is the empty string, and satisfy
m(x) ≥ 0 for every finite string x. These conditions are equivalent to what we called
Ville’s conditions above; your capital remains nonnegative for sure if and only if you never
bet more than you have.
Each of the selection rules considered by Wald and von Mises excluded a property

of measure zero. Wald considered countably many selection rules, and the union of a
countable number of sets of measure zero still has measure zero. So Wald could exclude
certain properties of measure zero. Ville could do better: he could exclude any property
of measure zero, and he could do it with a single nonnegative martingale; he did not need
a countable system of them. To see Ville’s picture clearly, we need to understand two
points:

1. If m1,m2, . . . are nonnegative martingales starting with 1, then the weighted sum
i αimi, where the αi are positive real numbers adding to 1, is also a nonnegative

martingale starting with 1. It is obtained by dividing our initial capital among the
strategies that produce the mi: we assign initial capital αi to the strategy that
makes, at each trial, αi times the bet made by the strategy that produces mi when
you start with 1. The sum


i αimi is unbounded if and only if one of the mi is

unbounded; it therefore excludes the union of the sets of measure zero excluded
inidividually by the mi.

2. If a nonnegative martingale m is unbounded on an event E, then there is another
martingale that tends to infinity on E. This is because we can stop the strategy at
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an arbitrarily large value for m, and by taking a weighted sum of stopped versions
of m for increasingly large values (1/αi, for example), we obtain a martingale that
tends to infinity on E. So instead of saying that a sequence is a collective with
respect to a nonnegative martingale m if m is bounded on the sequence, we can say
it is a collective with respect to m if m does not tend to infinity on the sequence.

Ville’s claim that for any event E of measure zero there exists a nonnegative martingale
that is unbounded on E is not difficult to prove. One begins with the observation that
for every set E of sequences of 1s and 0s of length N that contains a fraction  or less
of such sequences, there is a nonnegative martingale that multiplies its initial capital by
1/ on E.
One of von Mises’ arguments for his second axiom was that it prevents a gambler from

making money by selecting trials on which to bet. Ville argued that this “principle of the
excluded gambling system” should apply equally to a strategy that can vary the amount
bet, and so his martingale theory of collectives is a natural strengthening of von Mises’
and Wald’s theory. But whereas Ville’s 1936 note in the Comptes rendus had positioned
his theory as a new and better theory of collectives, his thesis and book were positioned,
as their title said, as a critique of collectives. He probably had no choice; he had to accept
the view of his mentors that probability should be seen as an application of functional
analysis and measure theory. To the extent that it is independently axiomatized, it
should start with an axiomatic system like Kolmogorov’s or like Borel’s, which differed
from Kolmogorov’s only in that conditional probability was taken as primitive and related
to unconditional probability by the axiom P (A&B) = P (A)P (B|A) ([82], p. 10).
In order to make the thesis a book, Ville added two philosophical chapters, one at the

beginning and one at the end. But the mathematical exposition in the middle remained a
thesis rather than a more mature exposition. A whole chapter is devoted to an elaborate
notation for working with sequences of 1s and 0s, and another is devoted to Popper
and Reichenbach. The simple explanation we have given concerning how to construct a
collective that approaches 1/2 from above is obscured by the apparatus, to the extent
that some recent readers have resorted to working out their own constructions [42].
The thesis and book were reviewed in half a dozen mathematical journals. Two of

the reviews, de Finetti’s review of the thesis in Zentralblatt (Zbl 0021.14505) and Doob’s
review of the book in the Bulletin of the American Mathematical Society (45(11):824,
1939), mentioned how martingales could replace systems of selection rules in the defini-
tion of collectives. The others gave the impression that Ville was merely reviewing the
literature on collectives.
It was only through Doob that Ville’s work on martingales contributed to mathemat-

ical probability in the second half of the twentieth century. Giving Ville full credit for
inventing the concept of a martingale, Doob developed the study of martingales within
measure-theoretic probability, where they have become increasingly central. (See Paul-
André Meyer’s article on the history of stochastic processes from 1950 through the 1980s
in this issue of the Electronic Journal for History of Probability and Statistics.)

5 The status quo of the 1950s

The 1937 colloquium at Geneva is sometimes seen as a watershed. A substantial math-
ematical literature had been devoted to collectives during the 1920s and 1930s, but
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the Geneva colloquium showed that most probabilists favored working in the measure-
theoretic framework of Kolmogorov’s axioms. By the 1950s, almost all mathematical
work in probability and statistics was in Kolmogorov’s framework, and little mathemati-
cal attention was being paid to collectives. For most working mathematicians, there was
no need to justify the notion of a probability measure by means of an additional layer: it
was much simpler to consider the measure as a primary object, not something generated
by an underlying collective.
Von Mises’ collectives did remain a topic of discussion among philosophers and philo-

sophically minded mathematicians and statisticians, at least in the West.8 Most people,
including most philosophers and mathematicians, intuitively identified probability with
frequency, and the theory of collectives was the simplest way to make that identification
into a theory. The notion of irregularity embodied in von Mises’ second axiom was some-
times influential, moreover, even when collectives were not mentioned; see for example
R. A. Fisher’s comments about relevant subsets in his 1956 book on statistical inference
([22], pp. 34–35).
Even among philosophers, however, Ville’s concept of a collective based on martingales

seems to have completely disappeared by the 1950s. Church’s 1940 article [14], often
regarded as the last word on collectives, had made no mention of Ville’s work. The
French logician and philosopher Jean Cavaillès wrote about Ville’s ideas in 1940 [7], but
his example was not followed by philosophers writing in English. (Cavaillès became a
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1950s can be measured by the ill informed praise for his thesis when he was appointed
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8Concerning criticism of von Mises by Soviet philosophers, see Siegmund-Schultze [77].
9In French: “La thèse de Monsieur Jean VILLE, intitulée Étude critique de la notion de Collectif,

est une étude sur les fondements du calcul des probabilités, qui a eu les plus vifs éloges de Monsieur
FRECHET et de Monsieur BOREL. Il est de fait que les assises de la théorie de la mesure étaient loin
d’être clarifiées à l’époque où Jean VILLE a fait sa thèse, et que cette dernière a fortement contribué à
sa mise au point.” (Archives Nationales, Fontainebleau, Cote 19840325, art. 542.)
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6 The invention of the algorithmic definition of randomness in the 1960s

The study of random sequences revived in the 1960s, when it became clear that new ideas
from mathematical logic and programming could be used to characterize the complexity
of sequences. The complexity of a sequence or other finite object can be defined as the
length of the shortest program that generates it (this is description complexity, as opposed
to computation complexity, since we ignore the time and other resources needed), and
the most complex objects can be considered random.
The idea of measuring the complexity of a message by the length of its shortest en-

coding, as well as the idea of calling the most complex messages the most random, had
become familiar in the 1940s and 1950s to students of Shannon’s information theory.
Shannon considered only very specific encodings, but mathematical logicians found rea-
sons for studying compressibility more abstractly. As A. A. Markov explained in 1964,
one reason came from the quantitative analysis of undecidability:

Undecidable algorithmic problems were discovered in many fields, includ-
ing the theory of algorithms, mathematical logic, algebra, analysis, topology
and mathematical linguistics. Their essential property is their generality: we
look for an algorithm that can be applied to every object from some infinite
class and always gives a correct answer. This general formulation makes the
question not very practical. A practical requirement is that the algorithm
work for every object from some finite, though probably very large, class. On
the other hand, the algorithm itself should be practical. . . . An algorithm is an
instruction, and it is natural to require that this instruction not be too long,
since we need to invent it. . . . So an algorithmic problem could be unsolvable
in a practical sense even if we restrict inputs to a finite set. ([44], p. 161)

The key step in defining algorithmic complexity was the realization and demonstra-
tion that there exist decompression algorithms that are universal and provide (in an
asymptotic sense that we will review) shortest possible descriptions for finite objects.
The shortest description of an object with respect to such a universal algorithm is the
object’s algorithmic complexity (or Kolmogorov complexity, as we now say). Once this
definition is established, it makes sense to take the second step and say that objects
with maximal complexity (i.e., longest descriptions) among the objects of some class are
random in this class.
Kolmogorov took these two steps in a celebrated article published in 1965 [31]. In

this section, we review what is known about how Kolmogorov came to these ideas. We
also discuss two other authors who arrived independently at similar ideas at around the
same time: Ray Solomonoff and Gregory Chaitin.

6.1 Kolmogorov

Milestones for the evolution of Kolmogorov’s thinking about algorithmic complexity and
randomness in the early 1960s are provided by the titles of talks that he gave at the
Moscow Mathematical Society:

1. Редукция данных с сохранением информации (Data reduction that conserves in-
formation), March 22, 1961.
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2. Что такое “информация” ? (What is information?), April 4, 1961.

3. О таблицах случайных чисел (On tables of random numbers), October 24, 1962.
This talk probably corresponds to the article Kolmogorov published in Sankhyā in
1963 [30].

4. Мера сложности конечных двоичных последовательностей (A complexity mea-
sure for finite binary strings), April 24, 1963.

5. Вычислимые функции и основания теории информации и теории вероятнос-
тей (Computable functions and the foundations of information theory and proba-
bility theory), November 19, 1963.

6. Асимптотика сложности конечных отрезков бесконечной последовательно-
сти (Asymptotic behavior of the complexities of finite prefixes of an infinite se-
quence), December 15, 1964. The title suggest that this talk might have discussed
Martin-Löf’s results, but Martin-Löf remembers discussing them with Kolmogorov
only the following spring (see Section 7).

Three later talks about algorithmic complexity, given from 1968 to 1974, have short
published abstracts, which are translated in Appendix B.
In his obituary for Kolmogorov written in 1988 [62], K. R. Parthasarathy recalled that

Kolomogorov had traveled by sea to India in the spring of 1962 to work at the Indian
Statistical Institute and receive an honorary degree from the University of Calcutta.
When he arrived in Calcutta, he told the students at the institute about his work, while
on the ship, “on tables of random numbers, and the measurement of randomness of a
sequence of numbers using ideas borrowed from mathematical logic.” This may refer to
the work that Kolmogorov published in Sankhyā in 1963 [30]. The third talk in the list
above, on October 24, 1962, would have been given after he returned to Moscow from
India.
In the Sankhyā article, Kolmogorov does not yet adopt the idea that maximally com-

plex sequences are random. Instead, he offers a finitary version of von Mises’ picture,
in which random sequences are those whose frequencies are not changed by the simplest
selection rules. In the article, Kolmogorov writes as follows:

I have already expressed the view . . . that the basis for the applicability of
the results of the mathematical theory of probability to real ‘random phenom-
ena’ must depend on some form of the frequency concept of probability, the
unavoidable nature of which has been established by von Mises in a spirited
manner. However, for a long time I had the following views:10
(1) The frequency concept based on the notion of limiting frequency as

the number of trials increases to infinity, does not contribute anything to sub-
stantiate the applicability of the results of probability theory to real practical
problems where we have always to deal with a finite number of trials.
(2) The frequency concept applied to a large but finite number of trials

does not admit a rigorous formal exposition within the framework of pure
mathematics.

10This is corroborated by a letter Kolmogorov wrote to Fréchet in 1939 (Appendix A.)

15



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.5, n°1. Juin/June 2009

Accordingly I have sometimes put forward the frequency concept which in-
volves the conscious use of certain not rigorously formal ideas about ‘practical
reliability’, ‘approximate stability of the frequency in a long series of trials’,
without the precise definition of the series which are ‘sufficiently large’. . .
I still maintain the first of the two theses mentioned above. As regards

the second, however, I have come to realize that the concept of random dis-
tribution of a property in a large finite population can have a strict formal
mathematical exposition. In fact, we can show that in sufficiently large popu-
lations the distribution of the property may be such that the frequency of its
occurrence will be almost the same for all sufficiently large sub-populations,
when the law of choosing these is sufficiently simple. Such a conception in its
full development requires the introduction of a measure of the complexity of
the algorithm. I propose to discuss this question in another article. In the
present article, however, I shall use the fact that there cannot be a very large
number of simple algorithms.

Whereas von Mises considered an infinite binary sequence random if the frequency of
1s has a limit and the selection rules we consider do not change this limit, Kolmogorov
now considered a finite binary sequence random if the simplest selection rules do not
change the frequency of 1s very much. Whereas Wald had relied on the constructible
selection rules being countable, Kolmogorov relied on simple rules being few in number.
His formalization of the idea of a selection rule also differed from von Mises; for example,
it allowed the decision whether to include a particular term to depend on later as well
as earlier terms. He did not, however, consider anything like a martingale for testing
randomness. We have no evidence that he ever took notice of Ville’s work.
The article was received by Sankhyā in April 1963. Kolmogorov’s hint that he will

write another article showing how to measure the complexity of an algorithm suggests
that he may have already worked out the difficulties in defining algorithmic complexity
when he submitted the article. This is also suggested by the title of the talk he gave at
the Moscow Mathematical Society on April 24, 1963. We can be confident, in any case,
that he had the definition by the autumn of 1964, because we have Per Martin-Löf’s
testimony that he learned about it then from Leonid Bassalygo [51]. Bassalygo confirms
this (in a private communication to Alexander Shen); he recalls a walk with Kolmogorov
in the early spring or late autumn in which Kolmogorov tried to explain the definition,
which he found difficult to grasp.
Bassalygo was not the only person to have difficulty understanding Kolmogorov’s

definition of algorithmic complexity. The problem lies in sorting out and keeping in mind
the sense in which the measurement of complexity is invariant when we change from one
universal algorithm to another. If we write KA(x) for the shortest description of a finite
string x by a universal algorithm A and KB(x) for the shortest description by a second
algorithm B, then the universality of A implies that there exists a constant c such that

KA(x) ≤ KB(x) + c

for all x, no matter how long. Because the constant c might be very large, this inequality
has only an asymptotic significance: it says that A does at least nearly as well as B for
very complex x, those for which KA(x) and KB(x) are both so large that c is negligible
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in comparison. If we compare A to yet another algorithm C instead of B, the constant c
may change. So when we choose A as our standard for measuring complexity – i.e., set
K(x) equal to KA(x) and call it the algorithmic complexity of x,11 we must keep in mind
that this algorithmic complexity K(x) is meaningful only up to an arbitrary constant
that is independent of x. Because of this arbitrary constant, the number K(x) does not
have any meaning or use for a particular string x. But we can use the function K to
make asymptotic statements about the complexity of strings as they are made longer and
longer. These subtleties and limitations have served as a brake on interest in algorithmic
complexity. Some people are confused by the definition; others find it too asymptotic for
their taste.
Kolmogorov was the first to publish a precise statement of the definition of algorithmic

complexity and a proof of the existence of universal algorithms. In the 1965 article in
which he first did this [31], he contrasted this new way of measuring information to the
familiar idea of Shannon information or entropy. The proposal to consider maximally
complex objects random appears only in a single sentence at the end of the article.
There are now many tutorials that provide further explanations concerning the defi-

nition of Kolmogorov complexity and the existence of universal algorithms. See, e.g., [41,
74].

6.2 Solomonoff

Kolmogorov’s invention of algorithmic complexity was anticipated by Ray Solomonoff
(born 1926). Solomonoff issued technical reports explaining the idea in 1960 and 1962,
before Kolmogorov had arrived at it, and he also anticipated Kolmogorov in publication,
with articles in Information and Control in 1964 [78, 79].
Solomonoff was interested in inductive inference. He proposed to formalize Occam’s

razor by basing predictions on the simplest law that fits the data – i.e., the simplest
program that generates it. He proved the invariance of the length of this program,
which is the same as proving the universality of Kolmogorov’s measure of complexity. He
also defined a universal prior distribution for prediction by averaging all possible laws,
giving smaller weights to laws with longer programs required to describe them, and he
conditioned this universal prior on what has been observed so far to make predictions.
The shortcoming of this early work, which helps explain its lack of influence, is its lack

of rigor. Solomonoff did not do mathematics with the rigor that might be expected for
so abstract a topic. He acknowledged this in the reports and articles themselves. A proof
of invariance can be extracted from Solomonoff’s article [78], but what is being proven
is not clearly stated and the reasoning is introduced with an apology: “an outline of the
heuristic reasoning behind this statement will give clues as to the meanings of the terms
used and the degree of validity to be expected of the statement itself.” Elsewhere in the
article, he writes, “If Eq. (1) is found to be meaningless, inconsistent or somehow gives
results that are intuitively unreasonable, then Eq. (1) should be modified in ways that
do not destroy the validity of the methods used in Sections 4.1 to 4.3.” Kolmogorov’s
student Leonid Levin remembers that when Kolmogorov instructed him to read and cite
Solomonoff, he was frustrated by this aspect of the work and soon gave up.
Kolmogorov made a point of acknowledging Solomonoff’s priority in publication after

11Many authors now use C(x) instead of K(x).
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he learned about it. In [32] he wrote: “As far as I know, the first paper published on
the idea of revising information theory so as to satisfy the above conditions [dealing with
individual objects, not random variables] was the article of Solomonov [78]. I came to
similar conclusions, before becoming aware of Solomonoff’s work, in 1963–1964, and pub-
lished my first arcticle on the subject [31] in early 1965”. Unlike Kolmogorov, Solomonoff
had not used the concept of algorithmic complexity to define randomness; Solomonoff
was interested instead in induction.
Solomonoff’s 1964 articles also contain other ideas that were developed much later. In

Section 3.2 (in the first of the two articles), for example, Solomonoff gives a simple formula
for predictions in terms of conditional a priori probability, using monotonic machines
much before Levin and Schnorr. In 1978, Solomonoff formally proved that this formula
works for all computable probability distributions [80].

6.3 Chaitin

Gregory Chaitin was born in the United States in 1947, into a family from Argentina.
He recalls that in an essay he wrote as he entered the Bronx High School of Science in
1962, he suggested that a finite binary string is random if it cannot be compressed into a
program shorter than itself [13]. He entered City College in 1964, and after his first year
there, in the summer of 1965, he wrote “a single paper that is of a size of a small book”
[13]. A condensed version was published in two parts in the Journal of the ACM. In the
first part, published in 1966 [9], he defines the complexity of a binary string in terms of
the size of a Turing machine; in the second, submitted in November 1965 but published
only in 1969 [10], he defines complexity more generally, in the same way as Kolmogorov
did in his 1965 article.
Chaitin and his family returned to Buenos Aires in 1966, and he joined IBM Argentina

as a programmer in 1967. His work on algorithmic complexity made a jump forward when
he visited IBM’s Watson Laboratory in New York for a few months in 1974. He joined
this laboratory full-time in 1975 and spent the period from 1976 to 1985 concentrating
on IBM’s RISC (Reduced Instruction Set Computer) project. He resumed his work on
algorithmic information theory in 1985 and has continued it since. Since 2000, he has been
a visiting professor in the Computer Science Department at the University of Auckland
in New Zealand.
We will discuss some of Chaitin’s work in the 1970s in Section 10. His most fa-

mous discovery, which we will not discuss in this article, is probably his proof of Gödel’s
incompleteness theorem based on the Berry paradox [11].

7 Per Martin-Löf’s definition of randomness

The Swedish mathematician Per Martin-Löf (born 1942) went to Moscow to study with
Kolmogorov during 1964–65, after learning Russian during his military service. In a re-
cent interview with Alexander Shen [51], he explained that he had not previously worked
on randomness and did not immediately do so when he arrived. Kolmogorov first gave
him a problem in discriminant analysis, which he solved but considered insufficiently chal-
lenging. In late autumn 1964, however, Leonid Bassalygo told him about Kolmogorov’s
new ideas about complexity and randomness, which he found very exciting. He set about
learning about recursive function theory and soon obtained interesting results about un-
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avoidable oscillations in complexity in the prefixes of infinite binary sequences, which he
discovered when trying to make the complexity of these prefixes as large as possible.
In March 1965, in a train to the Caucasus, Martin-Löf told Kolmogorov about two

theorems he had proven on these oscillations. Kolmogorov was so interested that he asked
Martin-Löf to present his results as a sequel to a lecture that Kolmogorov gave in Tbilisi,
on their way back to Moscow in late March. Martin-Löf wrote two papers in Russian
on the oscillations; the second appeared in 1966 [45]; the first was incorporated into an
article that appeared in English in 1971 [50].
Kolmogorov had been interested in finite sequences, but in order to get away from

the finitary theory’s annoying constants, Martin-Löf investigated instead the question of
how to define randomness for an infinite binary sequence. Martin-Löf’s first thought was
that an infinite binary sequence ω1ω2 . . . might be considered random if the complexity
of a prefix ω1 . . . ωn is always maximal up to a constant, i.e.,

K(ω1 . . . ωn) = n+O(1). (2)

(This means that there exists a constant c such that n− c ≤ K(ω1 . . . ωn) ≤ n+ c for all
n.) But there are no sequences with this property, Martin-Löf discovered, because of the
unavoidable oscillations in complexity.
By the time he left Moscow in July 1965, Martin-Löf was on his way to a definition

of randomness for infinite sequences using an approach that mixed logic with measure
theory: effectively null sets. In his interview with Alexander Shen [51], Martin-Löf re-
calls that although he was not familiar with the work of Wald, Church, and Ville, he
had absorbed from his reading of Borel the idea that a random sequence should avoid
properties with probability zero, or null sets (see, for example, [6]). It is impossible to
avoid all null sets; any single sequence itself has probability zero. But it is possible to
avoid countably many null sets, and Martin-Löf realized that only countably many can
be effectively constructed.
Whereas Wald had constructed null sets by way of selection rules, and Ville had

constructed them by way of martingales, Martin-Löf considered how null sets are defined
in measure theory. Consider as usual the simple case of the Bernoulli measure with
p = 1/2. Ever since Borel’s 1909 article, mathematicians had understood that this
measure is the same as Lebesgue measure on the interval [0, 1] when each real number in
[0, 1] is identified with the sequence of 1s and 0s formed by its dyadic expansion. Measure
theory says that a subset A of [0, 1] is null (has measure zero or probability zero) if for
every ε > 0 there exists a sequence of intervals covering A whose total measure is at
most ε. Martin-Löf called A effectively null if there exists an algorithm that takes any
positive rational ε as input and generates a sequence of intervals that cover A and have
total measure at most ε. It is obvious that the union of all effectively null sets is a
null set, since there are only countably many algorithms. Sequences that do not belong
to any effectively null set therefore exist and form a set with measure one. These are
the sequences Martin-Löf considered random. Now they are called Martin-Löf random
sequences.
Martin-Löf also proved that the union of all effectively null sets is effectively null –

in other words, there exists a largest effectively null set. This maximal set consists of
all nonrandom sequences. A set A is effectively null if and only if A is a subset of this
maximal effectively null set, i.e., A does not contain any random sequence.
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Martin-Löf arrived at his definition and results while back in Sweden during the
academic year 1965–66. He published them in 1966, in an article that was received by
the journal on April 1, 1966 [46]. Later in April, he gave four lectures on his results at
the University of Erlangen-Nürnberg, and notes from his lectures [47], in German, were
widely distributed, making his and Kolmogorov’s work on complexity and randomness
relatively well known in Germany.
In his first Erlangen lecture, Martin-Löf contrasted the foundations for probability

proposed by von Mises and Kolmogorov. Von Mises, he explained, wanted to base proba-
bility on the concept of a collective, whereas Kolmogorov had proposed to begin with the
axioms for probability and base applications on two ideas: that frequency approximates
probability when an experiment is repeated, and that an event of very small probability
can be expected not to happen on a single trial (Cournot’s principle). He cited Ville’s
book, the Geneva colloquium, and other contributions to the literature on collectives and
declared that Ville’s counterexample, in which the convergence to 1/2 is from above, had
brought discussion of von Mises’ Axiom II to an end for the time being.
In his 1966 article and in his Erlangen lectures, Martin-Löf begins how own contribu-

tion with the concept of a universal test for the randomness of finite sequences. This is a
reformulation of Kolmogorov’s definition of randomness for finite sequences by means of
a universal algorithm, but Martin-Löf found it could be adapted more readily to infinite
sequences. He showed that there exists a universal sequential test for the randomness
of infinite sequences, and that this way of defining randomness for infinite sequences is
equivalent to the definition in terms of the maximal effectively null set.
Martin-Löf never had an opportunity to discuss his results with Kolmogorov, but

they were mentioned in a detailed survey article [91], published in 1970 by Leonid Levin
and Alexander Zvonkin, two of Kolmogorov’s students, on Kolmogorov’s suggestion; Kol-
mogorov carefully reviewed this article and suggested many corrections. In addition to
Martin-Löf’s results, the article covered other results about complexity and randomness
obtained by the Kolmogorov school in Moscow.
Martin-Löf later studied the earlier literature on random sequences in more detail

and published a review of it in 1969 in English in the Swedish philosophical journal
Theoria [48]. This was the first survey in the English language of the work by von Mises,
Wald, and Ville, and others that we mentioned in Sections 2, 3, and 4 above, and in some
respects it rescued Ville from obscurity. Whereas the influence of Ville’s martingales in
measure-theoretic probability was by way of Doob, its influence in algorithmic randomness
seems to have been by way of Martin-Löf.

8 Claus-Peter Schnorr’s computable martingales

Claus-Peter Schnorr (born 1943), who was looking for new research topics after earning
a doctoral degree for work in mathematical logic at Saarbrücken in 1967, encountered
algorithmic randomness through the notes from Marin-Löf’s Erlangen lectures. Building
on Martin-Löf’s results, Schnorr brought martingales back into the story. His work on
algorithmic martingales during the late 1960s culminated, in 1970, in his habilitation and
in a series of lectures that appeared as a book in 1971 [67]. (See also [66, 68, 69].)
According to Schnorr’s talk at Dagstuhl [70], he never read Ville’s book, having learned

about the notion of a martingale indirectly. Schnorr’s book is the first publication in which
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martingales were used in connection with algorithmic randomness.
Schnorr studied computable and lower semicomputable martingales. A function f

(arguments are finite strings of 1s and 0s, values are reals) is called computable if there is
an algorithm that computes the values of f with any given precision: given x and positive
rational ε, the algorithm computes some rational ε-approximation to f(x). A function
is lower semicomputable if there is an algorithm that, given x, generates a sequence of
rational numbers that approach f(x) from below. It is easy to see that f is computable
if and only if both f and −f are lower semicomputable.
Schnorr characterized Martin-Löf randomness in terms of martingales as follows: an

infinite binary sequence is Martin-Löf random if and only if no lower semicomputable
nonnegative martingale wins against it (by becoming unbounded). (The initial capital
can be noncomputable in this setting.) He also brought the notion of a supermartingale,
introduced into measure-theoretic probability by Doob in the 1950s, into the theory of
algorithmic randomness. A function m on finite strings is a supermartingale if it satisfies
the supermartingale inequality,

m(x) ≥ m(x0) +m(x1)

2
.

This can be the capital process of a gambler who is allowed to throw money away at each
trial. Schnorr proved that lower semicomputable supermartingales characterize Martin-
Löf randomness in the same way as lower semicomputable martingales do.
But Schnorr was dissatisfied with this formulation. He proved that there exists a

sequence that wins against all computable martingales but is not Martin-Löf random,
and he considered computability more appropriate as a condition on martingales than
semicomputability. Why should we generate approximations from below but not above?
He concluded that semicomputable martingales (or supermartingales) are too broad a
class, and that the corresponding class of sequences, the Martin-Löf random sequences,
is too narrow.
Trying to find a definition of randomness that better matched his intuition, Schnorr

considered a smaller class of effectively null sets, now sometimes called Schnorr null. For
an effectively null set A there exists an algorithm that given ε > 0 generates a sequence
of intervals that cover A and have total measure at most ε. For a Schnorr null set, this
total measure should equal ε. This may sound a bit artificial, but it is equivalent to
asking for a computably converging series of lengths of covering intervals. The sequences
that are outside all Schnorr null sets he called random (“zufällig” in German; we now call
them Schnorr random). Schnorr proved that this class of sequences is indeed larger than
the class of Martin-Löf random sequences. He also proved that a sequence is Schnorr
random if and only if no computable martingale computably wins on it; this means that
there exists a nondecreasing unbounded computable function h(n) such that the player’s
capital after n steps is greater than h(n) for infinitely many n.
Schorr also considered a natural intermediate requirement: no computable martingale

wins (computably or not) on a sequence, i.e., all computable martingales are bounded
on its prefixes. Schnorr proved that this class (now its members are sometimes called
computably random sequences) is broader than the class of Martin-Löf random sequences;
much later Wang [88] showed that it is still smaller than the class of all Schnorr random
sequences.

21



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.5, n°1. Juin/June 2009

Schnorr’s work during this period also contained many other ideas that endured and
were developed further much later. For example, he considers how fast a player’s capital
increases during the game. If a sequence violates the strong law of large numbers, there
exists a computable martingale that wins exponentially fast against it, but the violation
of more delicate laws may involve slower growth in the player’s capital. In the past ten
years, the growth of martingales has been connected to notions of effective dimension [43].
One of Schnorr’s goals was to develop concepts of pseudorandomness. An object

with a short description can be called pseudorandom if the time needed to decompress
the description is unreasonably large. So Schnorr considered complexity with bounded
resources in his book. He later worked in computational cryptography, where more recent
and more practical theories of pseudorandomness are used [28].

9 Leonid Levin’s semimeasures

Semimeasures, which are closely related to supermartingales, were introduced in the 1970
article by Levin and Zvonkin [91].
Let Σ be the set of all finite and infinite binary sequences, and let Σx be the set of

all extensions (finite and infinite) of a binary string x. Then Σx = Σx0 ∪ Σx1 ∪ {x}. A
semimeasure is a measure on Σ. It is convenient to specify a semimeasure in terms of the
value it assigns to Σx for each x, say q(x). A nonnegative real-valued function q on finite
strings defines a semimeasure if and only if

q(x) ≥ q(x0) + q(x1) (3)

for every finite string x. We usually assume also that q() = 1 (this says that the measure
assigns the value 1 to the whole set Σ; it is a probability measure). The difference between
the two sides of the inequality (3) is the measure of the finite string x. A semimeasure is
said to be lower semicomputable if the function x → q(x) is lower semicomputable.
As Levin showed in the article with Zvonkin, lower semicomputable semimeasures are

output distributions of randomized algorithms. Consider a black box that has a random
bit generator inside and, being started, produces a string of 1s and 0s bit by bit (paus-
ing between each bit for an unpredictable amount of time). This machine can produce
both finite (if no bits appear after some moment) and infinite sequences and therefore
determines a probability distribution on Σ. This distribution is a lower semicomputable
semimeasure and every lower semicomputable semimeasure (that equals 1 on the entire
set Σ) can be obtained in this way.
What is the connection between semimeasures and supermartingales? As Ville had

explained in 1939 ([82], pp. 88–89), a nonnegative martingale m is a ratio of two prob-
ability measures. To see what this means, write p(x) for the probability the Bernoulli
measure with parameter 1/2 assigns to x being a prefix of the infinite binary sequence.
Then p(x) = (1/2)n, where n is the length of x. Because p(x0) = p(x1) = (1/2)p(x),
Equation (1) tells us that

m(x)p(x) = m(x0)p(x0) +m(x1)p(x1). (4)

If m is nonnegative and starts at 1, this implies that m(x)p(x) can be interpreted as
the value assigned to Σx by a probability measure. Writing q(x) for m(x)p(x), we have
m(x) = q(x)/p(x). Every nonnegative martingalem(x) starting at 1 can be represented in
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this way, and every such ratio is a nonnegative martingale starting at 1. This generalizes
to supermartingales and semimeasures. If q is a semimeasure and p is a probability
measure, then the ratio q(x)/p(x) is a nonnegative supermartingale starting at 1, and
every nonnegative supermartingale starting at 1 can be obtained in this way. Lower
semicomputable semimeasures correspond to lower semicomputable supermartingales.
The article with Zvonkin also included Levin’s proof of the existence of a maximal

lower semicomputable semimeasure, called the universal semimeasure or a priori proba-
bility on a binary tree. This is a lower semicomputable semimeasure r such that for any
other lower semicomputable semimeasure q there exists a constant c such that

r(x) ≥ q(x)

c

for any finite string x.
Semimeasures can be used to define supermartingales with respect to any measure,

not only uniform Bernoulli measure. Ville had already shown that the representation of
a martingale as a ratio of measures generalizes to the case where p is any measure on
{0, 1}∞: a martingale with respect to p is the ratio of some measure q to p. A super-
martingale with respect to an arbitrary measure p is similarly the ratio of a semimeasure
q to p. This implies that for any measure p there exists a maximal lower semicomputable
p-supermartingale: it is the ratio of the universal semimeasure r (perhaps conditioned
on p in a certain sense) to p. This connects maximal p-supermartingales for different
p: when we switch from semimeasures to supermartingales, one object (the universal
semimeasure) is transformed into a family of seemingly different objects (maximal lower
semicomputable supermartingales with respect to different measures).
Zvonkin and Levin’s 1970 article [91] had the ingredients needed to provide a criterion

of randomness in terms of semimeasures: a sequence ω is Martin-Löf random with respect
to a computable measure p if and only if the ratio r(x)/p(x) is bounded for prefixes x
of ω, where r(x) is the universal semimeasure. (This statement is a reformulation of
Schnorr’s characterization of Martin-Löf randomness in terms of lower semicomputable
supermartingales.) However, Levin discovered this result only later (see Levin’s letters
to Kolmogorov in Appendix C).

10 Characterizing Martin-Löf randomness using complexity

The goal of characterizing the randomness of an infinite sequence in terms of the com-
plexity of its prefixes was finally achieved in the 1970s by Schnorr and Levin. To do
this (and this itself was a very important development), they modified the definition of
algorithmic complexity. Schnorr and Levin introduced monotone complexity, and Levin
and Chaitin introduced prefix complexity.
The history of these discoveries is complicated, because different people, working

independently, sometimes used slightly different definitions, and sometimes the results
remained unpublished for several years or were published without proofs in a short and
sometimes cryptic form. We begin this section with some biographical information about
Levin, which explains in part why this happened with some of his results.
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10.1 Leonid Levin in the Soviet Union

In a recent interview [40], Leonid Levin recalls that he was thinking about the length of
the shortest arithmetic predicate that is provable for a single value of its parameter when
he was a student in a high school for gifted children in Kiev in 1963–64. He realized that
he did not know how to make this definition invariant – i.e., how to make the complexity
independent of the specific formalization of arithmetic. The following year, 1964–65, he
was studying in a boarding school for gifted children in Moscow, founded by Kolmogorov,
and he posed his question to A. Sossinsky, a teacher there. Sossinsky asked Kolmogorov
about the question, and Kolmogorov replied that he had answered it in a forthcoming
article.
In January 1966, Levin entered Moscow State University, becoming a first-year under-

graduate in the middle of the academic year. This was unusual, but it was permitted for
students at Kolmogorov’s school that year, because the Soviet Union was changing from
an 11-year to a 10-year curriculum. Early during his study at the university, he obtained
a result on the symmetry of information, which he hoped to use to convince Kolmogorov
to be his adviser. But Kolmogorov was always busy, and the appointment to talk with
him was postponed several times from February to August 1967. Finally, when Levin
called him again, Kolmogorov agreed to see him and mentioned that he would tell him
something he had just discovered – that information is symmetric. Levin was surprised:
“But, Andrei Nikolaevich, this is exactly what I wanted to tell you.” � “But do you
know that the symmetry is only up to logarithmic terms?” � “Yes.” � “And you can
give a specific example?” � “Yes.” The results they had discovered independently were
published without proof by Kolmogorov in 1968 [32], and the proofs were published in
the 1970 article by Zvonkin and Levin [91]. Levin continued to work with Kolmogorov
during his undergraduate years, but because Kolmogorov did not officially belong to the
Mathematical Logic Division of the Mathematics Department, where Levin was enrolled,
V. A. Uspensky, who had been Kolmogorov’s student in the 1950s, served as Levin’s
official advisor.
The typical track for a future mathematician in the Mathematics Department of

Moscow State University at that time was 5 years of undergraduate studies plus 3 years
of graduate school. Then the student was supposed to defend a thesis, becoming a
“kandidat” (кандидат физико-математических наук), which is roughly equivalent to
having a doctoral degree in the United States. To enter graduate school after finishing 5
years of undergraduate studies, one needed a good academic record and a recommendation
from the local communist party and komsomol. Komsomol (коммунистический союз
молодёжи, Communist Union of Young People) was almost obligatory for those from 14
to 28 years of age. Most university students were members, although there were some
exceptions and the requirement was never formalized as a law.
Being Jewish, already a handicap at that time, and also a nonconformist, Levin

created a lot of trouble for the local university authorities as an undergraduate. He
became an elected local komsomol leader but did not follow the instructions given by
his Communist Party supervisors. Noisy and arrogant, as he later described himself
([73], p. 152), he got away with his behavior because the local authorities did not want
to take disciplinary actions that would show higher-ups they were having difficulties,
but this tolerance faded after the Prague Spring of 1968, and when Levin finished his
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undergraduate studies in 1970, his misbehavior was mentioned in his graduation letter
of recommendation. Not surprisingly, he was not admitted to the graduate school. But
with the help of the university rector, I. G. Petrovsky, Kolmogorov managed to secure a
job for him in the university’s statistical laboratory, which Kolmogorov headed.
An individual could defend a “kandidat” thesis without having been enrolled in a

graduate program. So Levin prepared a thesis, consisting of results he had published
in the 1970 article with Zvonkin, along with a few others. It was clearly impossible to
defend it in Moscow, but a defense finally took place in Novosibirsk in Siberia in 1971.
Very untypically, it was unsuccessful. Though all the reviews were positive, the jury not
only rejected the thesis, but they included reference to Levin’s “unclear political position”
in their report. It effectively barred him from defending any thesis in the Soviet Union.
Levin realized that he might be soon barred from publishing in Soviet journals, and

many important results, including the definition of prefix complexity, remain unpublished
at the time. So he rushed a number of articles into print from 1973 to 1977. These articles
were short and cryptic, containing many claims without proofs and many ideas that were
understood only much later.
Some of Levin’s results also appeared in a paper published in 1974 by Peter Gács.

While working in Hungary, Gács had read Kolmogorov’s 1965 article, Martin-Löf’s lecture
notes from Erlangen, and Zvonkin and Levin’s 1970 article, and he had begun correspond-
ing with Levin. He spent the 1972–73 academic year in Moscow working with Levin.
Levin was eventually given permission to leave the Soviet Union. As he recalls, the

KGB made it known to him through Kolmogorov that they thought emigration was
his best option. (Kolmogorov did not say whether he agreed with their advice.) In
1978, Levin immigrated to the United States, where he became well known for work in a
number of areas of theoretical computer science, including one-way functions, holographic
proofs, and for discovering (independently from Cook and Karp) the phenomenon of NP-
completeness (the article [36] appeared while he was still in Russia).

10.2 Monotone complexity: Levin and Schnorr

By 1971–72, Levin and Schnorr had both realized, independently, that the oscillations in
complexity that had stood in the way of Martin-Löf’s goal of characterizing randomness
by requiring maximal complexity for all prefixes can be eliminated if the algorithms or
machines used to define complexity are required to be monotone in some sense.
We see the idea of monotone complexity already in Appendix C’s Letter II from

Levin to Kolmogorov, written in January 1971 or earlier. There Levin explains that an
algorithm A is monotone if whenever A(x) is defined and y is a prefix of x, A(y) is also
defined and is a prefix of A(x). Let us define monotone complexity as the minimal length
of a program (for an optimal monotone algorithm) that produces x. Levin formulates
the following criterion: a sequence is Martin-Löf random with respect to a computable
measure p if and only if the monotone complexity of its prefixes equals − log2 p(x)+O(1).
For the uniform Bernoulli measure this means that ω1ω2 . . . is random if and only if the
monotone complexity of ω1 . . . ωn equals n + O(1). Note that the monotone complexity
of any string of length n is at most n + O(1), and this criterion characterizes random
sequences as sequences whose prefixes have maximal possible complexity.
Schnorr advocated a version of monotone complexity, which he called process complex-

ity, in May 1972 at the Fourth ACM Symposium on the Theory of Computing (STOC),
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in Denver [68]. In the proceedings, he proved that a sequence is Martin-Löf random if
and only if its n-bit prefix has monotone complexity n+O(1). This seems to be first time
this result appears in print, but as Schnorr pointed out, the basic properties of monotone
algorithms had already been studied by himself [67] and by Zvonkin and Levin [91].
In an article that appeared in 1973 [35], Levin proved essentially the same result

using a slightly different version of monotone complexity, which Schnorr adopted in a
subsequent article [69]. Levin also noted that the same proof works for a priori com-
plexity – i.e., minus the binary logarithm of the universal semimeasure on the binary
tree. This statement is equivalent to Schnorr’s characterization of randomness in terms
of semicomputable supermartingales.

10.3 Prefix complexity

Prefix complexity can be defined in different ways. First, the prefix complexity of a natu-
ral number i can be defined as − log2 mi where mi is the maximal lower semicomputable
converging series of non-negative reals. (A series


i ai is lower semicomputable if the

function i → ai is lower semicomputable, i.e., for every i one can effectively generate ap-
proximations to ai from below.) The prefix complexity of binary strings is then defined
using some computable bijection between strings and natural numbers. (Of course, we
need to prove that there exists a maximal converging lower semicomputable series; it can
be done in the same way as for universal semimeasures on the binary tree.)
Another definition explains the name used: the prefix complexity of a string x is the

length of the shortest program p, considered as a bit string, that produces x, assuming
that the programming language used has the following “prefix” (self-delimiting) property:
if some program p produces some output, any extension of it produces the same output.
Levin and Gács were the first to publish a definition of prefix complexity. They did so

in Russian in 1974. Levin’s 1974 article [37] appeared in English translation in 1976, and
Gács’ 1974 article, which attributed the idea to Levin, appeared in English translation
in 1975 [25] (see [26]). The two authors’ articles state, without proof, the equivalence of
the two definitions mentioned above. Levin’s article refers for details to an unpublished
paper of his and to Gács’ article. The unpublished paper appeared only in 1976 [38].
The prefix complexity defined as − log2 mi (but not the other definition) appeared also

in Levin’s unpublished 1971 thesis. In the 1970 article [91] there is a footnote suggesting
consideration of the a priori probability of the string 0n1 (n zeros followed by one); this
quantity coincides with mi. But this idea is not developed further in the article.
Chaitin independently worked out similar ideas during his work at the Watson Lab-

oratory in 1974, and his resulting article, which appeared in 1975 [12], contained similar
definitions and a proof that prefix complexity and minus the logarithm of the maximal
converging series are equal – the first published proof of this result. This article by
Chaitin is also the first publication to state that prefix complexity characterizes Martin-
Löf randomness: a sequence ω1ω2 . . . is Martin-Löf random with respect to the uniform
Bernoulli measure if and only if the prefix complexity of ω1 . . . ωn is at least n − O(1).
(For prefix compleixity the upper bound n+O(1) is no longer valid, but the lower bound
still provides a randomness criterion.) In the article [12], Chaitin attributes this result
to Schnorr: Chaitin suggested the requirement “prefix complexity of ω1 . . . ωn is at least
n−O(1)” as the definition of randomness (now this is often called “Chaitin randomness”)
and Schnorr, acting as a referee of the paper, informed Chaitin about the equivalence.
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In his talk at Dagstuhl [70], Schnorr says, “I knew the first paper of Chaitin that has
been published one year later after the Kolmogorov 1965 paper, but the next important
paper made Chaitin one of the basic investigators of complexity. This was a paper on
self-delimiting or prefix-free descriptions, and this was published in 1975 in the Journal
of the ACM. In fact I was a referee of this paper, and I think Chaitin knew this because
I’ve sent my personal comments and suggestions to him, and he used them.”
Chaitin’s definition of prefix complexity was slightly different from Levin’s: whereas

Levin required that extensions of a program p that produces x should produce x, too,
Chaitin required that such extensions always produce nothing. Both restrictions reflect
(in different ways) the intuitive idea of a self-delimiting program, which allows the ma-
chine to find out the program has ended without the use of an end-marker. The differences
are not important; the two definitions lead to the same quantity up a O(1) term and so
are equivalent.
The possibility of switching back and forth between two definitions of prefix complex-

ity (in terms of a series and self-delimiting programs) is an important technical advan-
tage. Another advantage of prefix complexity over complexity as originally defined (plain
complexity) is that it allows an improvement in the result on symmetry of information
originally discovered by Kolmogorov and Levin. We can relate the complexity of a pair to
the conditional complexities with an O(1) error term instead of the the logarithmic error
term obtained by Kolmogorov and Levin. This was discovered independently by Levin
and Chaitin; the first proofs were published in Gács’ 1974 article [25] and Chaitin’s 1975
article [12].

11 Epilogue

The mathematical theory of randomness and algorithmic information theory have con-
tinued to develop since the seminal works of the 1960s and 1970s. In recent decades, they
have benefited from advanced techniques of recursion theory and have been applied to
other areas of mathematics. Recent books include Christian Calude’s Information and
Randomness. An Algorithmic Perspective [8] and Ming Li and Paul Vitányi’s An Intro-
duction to Kolmogorov Complexity and Its Applications [41], both of which have copious
historical notes. Many interesting recent results can be found in books by Andre Nies [61]
and by Rod Downey and Denis Hirschfeldt [21].
Most of the work on algorithmic randomness since the 1970s has been concerned with

infinite sequences. But Kolmogorov was always more interested in finite random objects,
because only finite objects can be relevant to our experience. Some of his ideas for using
the theory of complexity in probability modeling were extended by his student Evgeny
Asarin [1, 2].
Martingales, which can have a finite or infinite horizon, have also recently been consid-

ered as a foundation for probabilistic reasoning independently of the classical axioms [71].
Instead of forbidding a nonnegative martingale to diverge to infinity in an infinite number
of trials, one forbids it to multiply its initial capital by a large factor in a finite number of
trials. Predictions are made and theorems proven by constructing martingales. Tests are
conducted by checking whether martingales do multiply their initial capital handsomely.
The picture that emerges is a little different from classical probability theory, because
the logic does not depend on there being enough bets to define probability distributions.
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Appendix

A Letter from Kolmogorov to Fréchet

The Fréchet papers in the archives of the Academy of Sciences in Paris include a letter in
French to Fréchet, in which Kolmogorov elaborates briefly on his philosophy of probability.
This translation is published with permission from the Academy.

Moscow 6, Staropimenovsky per. 8, flat 5
3 August 1939

Dear Mr. Fréchet,
I thank you sincerely for sending the proceedings of the Geneva Colloquium, which

arrived during my absence from Moscow in July.
The conclusions you express on pp. 51–54 are in full agreement with what I said in

the introduction to my book:

In the pertinent mathematical circles it has been common for some time
to construct probability theory in accordance with this general point of view.
But a complete presentation of the whole system, free from superfluous com-
plications, has been missing. . .

You are also right to attribute to me (on p. 42) the opinion that the formal axiom-
atization should be accompanied by an analysis of its real meaning. Such an analysis
is given, perhaps too briefly, in the section “The relation to the world of experience” in
my book. Here I insist on the view, expressed by Mr. von Mises himself (Wahrschein-
lickeitsrechnung 1931, pp. 21–26), that “collectives” are finite (though very large) in real
practice.
One can therefore imagine three theories:

A A theory based on the notions of “very large” finite “collectives”, “approximate”
stability of frequencies, etc. This theory uses ideas that cannot be defined in a
purely formal (i.e., mathematical) manner, but it is the only one to reflect experience
truthfully.

B A theory based on infinite collectives and limits of frequencies. After Mr. Wald’s
work we know that this theory can be developed in a purely formal way without
contradictions. But in this case its relation to experience cannot have any different
nature than for any other axiomatic theory. So in agreement with Mr. von Mises,
we should regard theory B as a certain “mathematical idealization” of theory A.

C An axiomatic theory of the sort proposed in my book. Its practical value can be
deduced directly from the “approximate” theory A without appealing to theory B.
This is the procedure that seems simplest to me.

Yours cordially,
A. Kolmogoroff
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B Abstracts of Kolmogorov’s talks

Abstracts of some of the talks at the meetings of Moscow Mathematical Society were
published in the journal “Успехи математических наук” (Uspekhi matematicheckikh
nauk). Here we reproduce translations of the abstracts for three talks by Kolmogorov, in
1967, 1971, and 1974, on algorithmic information theory. The translations are by Leonid
Levin; we have edited them slightly.

B.1 A. N. Kolmogorov, “Several theorems about algorithmic entropy and algorithmic
amount of information”. The talk was on October 31, 1967; the abstract appeared
in Volume 23, no. 2, March-April 1968.

The algorithmic approach to the foundations of information theory and probability theory
was not developed far for several years after its appearance, because some questions raised
at the very start remained unanswered. Now the situation has changed somewhat. In
particular, it is ascertained that the decomposition of entropy H(x, y) ∼ H(x) +H(y|x)
and the formula J(x|y) ∼ J(y|x) hold for the algorithmic concept only with accuracy
O([logH(x, y)]) (Levin, Kolmogorov).
The fundamental difference between the algorithmic definition of a Bernoulli sequence

(a simplest collective) and the definition of Mises-Church, stated earlier, is concretized
in the form of a theorem: there exist Bernoulli (in the sense of Mises-Church) sequences
x = (x1, x2, ...) with density of ones p = 1

2
, with initial segments of entropy (“complexity”)

H(xn) = H(x1, x2, ..., xn) = O(log n) (Kolmogorov).
For understanding of the talk an intuitive, not formal, familiarity with the concept of

a computable function suffices.

B.2 A. N. Kolmogorov, “Complexity of specifying and complexity of constructing math-
ematical objects”. The talk was on November 23, 1971; the abstract appeared in
Volume 27, no. 2, 1972.

1. Organizing machine computations requires dealing with evaluation of (a) complexity
of programs, (b) size of memory used, (c) duration of computation. The talk
describes a group of works that consider similar concepts in a more abstract manner.

2. It was noticed in 1964–1965 that the minimal length K(x) of the binary repre-
sentation of a program specifying the construction of an object x can be defined
invariantly up to an additive constant (Solomonoff, A. N. Kolmogorov). This per-
mitted using the concept of definition complexityK(x) of constructive mathematical
objects as the basis for a new approach to the foundations of information theory
(A. N. Kolmogorov, Levin) and probability theory (A. N. Kolmogorov, Martin-Löf,
Schnorr, Levin).

3. Such characteristics as “required memory volume,” or “required duration of work”
are harder to free of technical peculiarities of special machine types. But some
results may already be extracted from the axiomatic “machine-independent” theory
of a broad class of similar characteristics (Blum, 1967). Let Π(p) be a characteristic
of “construction complexity” of the object x = A(p) by a program p, and let Λ(p) be
the length of the program p. The formula KnΠ(x) = inf(Λ(p) : x = A(p),Π(p) = n)

29



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.5, n°1. Juin/June 2009

defines the “n-complexity of definition” of object x (when the condition is unsatis-
fiable, the inf is considered infinite).

4. Barzdin’s Theorem on the complexity K(Mα) of prefixes Mα of an enumerable set
of natural numbers (1968) and results of Barzdin, Kanovich, and Petri on corre-
sponding complexities KnΠ(Mα), are of general mathematical interest, as they shed
some new light on the role of extending previously used formalizations in the de-
velopment of mathematics. The survey of the state of this circle of problems was
given in the form free from any cumbersome technical apparatus.

B.3 A. N. Kolmogorov, “Complexity of algorithms and objective definition of random-
ness”. The talk was on April 16, 1974; the abstract appeared in Volume 29, no. 4
(155), 1974.

To each constructive object corresponds a function Φx(k) of a natural number k – the log
of minimal cardinality of x-containing sets that allow definitions of complexity at most k.
If the element x itself allows a simple definition, then the function Φ drops to 1 even for
small k. Lacking such a definition, the element is “random” in a negative sense. But it
is positively “probabilistically random” only when the function Φ, having taken the value
Φ0 at a relatively small k = k0, then changes approximately as Φ(k) = Φ0 − (k − k0).

C Levin’s letters to Kolmogorov

These letters are not dated but were written after the submission of [91] in August 1970
and before Kolmogorov left (in January 1971) for an oceanographic expedition on the ship
Dmitry Mendeleev. Copies (the typescript for the first two letters and the handwritten
manuscript for the third one) provided by Leonid Levin and translated by Alexander
Shen.

C.1 Letter I

Dear Andrei Nikolaevich! A few days ago I obtained a result I like a lot. Maybe it could
be useful to you if you work on these topics while traveling on the ship.
This result gives a formulation for the foundations of probability theory different

from Martin-Löf. I think it is closer to your initial idea about the relation between
complexity and randomness and is much clearer from the philosophical point of view (as,
e.g., [Yu. T.] Medvedev says).
Martin-Löf considered (for an arbitrary computable measure P ) an algorithm that

studies a given sequence and finds more and more deviation from the P -randomness
hypothesis. Such an algorithm should be P -consistent, i.e., find deviations of size m only
for sequences in a set that has measure at most 2−m. It is evident that a number m
produced by such an algorithm on input string x should be between 0 and − log2 P (x).
Let us consider the complementary value (log2 P (x))−m and call it the “complementary
test” (the consistency requirement can be easily reformulated for complementary tests).

Theorem. The logarithm of a priori probability [on the binary tree] − log2 R(x) is
a P -consistent complementary test for every measure P and has the usual algorithmic
properties.

30



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.5, n°1. Juin/June 2009

defines the “n-complexity of definition” of object x (when the condition is unsatis-
fiable, the inf is considered infinite).

4. Barzdin’s Theorem on the complexity K(Mα) of prefixes Mα of an enumerable set
of natural numbers (1968) and results of Barzdin, Kanovich, and Petri on corre-
sponding complexities KnΠ(Mα), are of general mathematical interest, as they shed
some new light on the role of extending previously used formalizations in the de-
velopment of mathematics. The survey of the state of this circle of problems was
given in the form free from any cumbersome technical apparatus.

B.3 A. N. Kolmogorov, “Complexity of algorithms and objective definition of random-
ness”. The talk was on April 16, 1974; the abstract appeared in Volume 29, no. 4
(155), 1974.

To each constructive object corresponds a function Φx(k) of a natural number k – the log
of minimal cardinality of x-containing sets that allow definitions of complexity at most k.
If the element x itself allows a simple definition, then the function Φ drops to 1 even for
small k. Lacking such a definition, the element is “random” in a negative sense. But it
is positively “probabilistically random” only when the function Φ, having taken the value
Φ0 at a relatively small k = k0, then changes approximately as Φ(k) = Φ0 − (k − k0).

C Levin’s letters to Kolmogorov

These letters are not dated but were written after the submission of [91] in August 1970
and before Kolmogorov left (in January 1971) for an oceanographic expedition on the ship
Dmitry Mendeleev. Copies (the typescript for the first two letters and the handwritten
manuscript for the third one) provided by Leonid Levin and translated by Alexander
Shen.

C.1 Letter I

Dear Andrei Nikolaevich! A few days ago I obtained a result I like a lot. Maybe it could
be useful to you if you work on these topics while traveling on the ship.
This result gives a formulation for the foundations of probability theory different
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Let me remind you that by a priori probability I mean the universal semicomputable
measure introduced in our article with Zvonkin. [See [91].] It is shown there that it
[minus its logarithm] is numerically close to complexity.
Let us consider a specific computable measure P . Compared to the universal Martin-

Löf test f (specific to a given measure P ) our test is not optimal up to an additive
constant, but is asymptotically optimal. Namely, if the universal Martin-Löf test finds a
deviation m, our test finds a deviation at least m− 2 log2 m− c. Therefore, the class of
random infinite binary sequences remains the same.
Now look how nicely it fits the philosophy. We say that a hypothesis “x appeared

randomly according to measure P ” can be rejected with certainty m if the measure P
is much less consistent with the appearence of x than a priori probability (this means
simply that P (x) < R(x)/2m. This gives a law of probability theory that is violated
with probability at most 2−m. Its violation can be established effectively since R is semi-
computable [enumerable from below]. But if this law holds, all other laws of probability
theory [i.e., all Martin-Löf tests] hold, too. The drawback is that it gives a bit smaller
value of randomness deficiency (only m − 2 log2 m − c instead of m), but this is a price
for the universality (arbitrary probability distribution). The connection with complexity
is provided because − log2 R(x) almost coincides with the complexity of x. Now this
connection does not depend on the measure.
It is worth noting that the universal semicomputable measure has many interesting

applications besides the above mentioned. You know its application to the analysis of ran-
domized algorithms. Also it is often useful in proofs (e.g., in the proof of J. T. Schwartz’
hypothesis regarding the complexity of almost all trajectories of dynamic systems). Once
I used this measure to construct a definition of intuitionistic validity. All this show that
it is a rather natural quantity.

L.

C.2 Letter II

Dear Andrei Nikolaevich!
I would like to show that plain complexity does not work if we want to provide an exact

definition of randomness, even for a finite case. For the uniform distribution on strings
of fixed length n the randomness deficiency is defined as n minus the complexity. For a
non-uniform distribution length is replaced by minus the logarithm of the probability.
It turns out that even for a distribution on a finite set the randomness deficiency could

be high on a set of large measure.

Example. Let

P (x) =


2−(l(x)+100) if l(x) ≤ 2100

0 if l(x) > 2100.

Then | log2 P (x)| −K(x) exceeds 100 for all strings x.
A similar example can be constructed for strings of some fixed length (by adding zero

prefixes). The violation could be of logarithmic order.
Let me show you how to sharpen the definition of complexity to get an exact result

(both for finite and infinite sequences).
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Definitions. Let A be a monotone algorithm, i.e., for every x and every y that is a
prefix of x, if A(x) is defined, then A(y) is defined too and A(y) is a prefix of A(x). Let
us define

KMA(x) =


min l(p) : x is a prefix of A(p)
∞ if there is no such p

The complexity with respect to an optimal algorithm is denoted by KM(x).
Let P (x) be a computable distribution on the Cantor space Ω, i.e., P (x) is the measure

of the set Γx of all infinite extensions of x.

Theorem 1.
KM(x) ≤ | log2 P (x)|+O(1);

Theorem 2.
KM((ω)n) = | log2 P ((ω)n)|+O(1)

for P -almost all ω; here (ω)n stands for n-bit prefix of ω. Moreover, the probability that
the randomness deficiency exceeds m for some prefix is bounded by 2−m.

Theorem 3. The sequences ω such that

KM((ω)n) = | log2 P ((ω)n)|+O(1);

satisfy all laws of probability theory (all Martin-Löf tests).

Let me use this occasion to tell you the results from my talk in the laboratory [of
statistical methods in Moscow State University]: why one can omit non-computable tests
(i.e., tests not definable without a strong language).
For this we need to improve the definition of complexity once more. The plain com-

plexity K(x) has the following property:
Remark. Let Ai be an effectively given sequence of algorithms such that

KAi+1
(x) ≤ KAi(x)

for all i and x. Then there exists an algorithm A0 such that

KA0(x) = 1 + min
i

KAi
(x).

Unfortunately, it seems that KM(x) does not have this property. This can be cor-
rected easily. Let Ai be an effective sequence of monotone algorithms with finite domain
(provided as tables) such that

KMAi+1
(x) ≤ KMAi(x)

for all i and x. Let us define then

KMAi
(x) = min

i
KMAi

(x).
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KMA(x) =


min l(p) : x is a prefix of A(p)
∞ if there is no such p

The complexity with respect to an optimal algorithm is denoted by KM(x).
Let P (x) be a computable distribution on the Cantor space Ω, i.e., P (x) is the measure

of the set Γx of all infinite extensions of x.

Theorem 1.
KM(x) ≤ | log2 P (x)|+O(1);

Theorem 2.
KM((ω)n) = | log2 P ((ω)n)|+O(1)

for P -almost all ω; here (ω)n stands for n-bit prefix of ω. Moreover, the probability that
the randomness deficiency exceeds m for some prefix is bounded by 2−m.

Theorem 3. The sequences ω such that

KM((ω)n) = | log2 P ((ω)n)|+O(1);

satisfy all laws of probability theory (all Martin-Löf tests).

Let me use this occasion to tell you the results from my talk in the laboratory [of
statistical methods in Moscow State University]: why one can omit non-computable tests
(i.e., tests not definable without a strong language).
For this we need to improve the definition of complexity once more. The plain com-

plexity K(x) has the following property:
Remark. Let Ai be an effectively given sequence of algorithms such that

KAi+1
(x) ≤ KAi(x)

for all i and x. Then there exists an algorithm A0 such that

KA0(x) = 1 + min
i

KAi
(x).

Unfortunately, it seems that KM(x) does not have this property. This can be cor-
rected easily. Let Ai be an effective sequence of monotone algorithms with finite domain
(provided as tables) such that

KMAi+1
(x) ≤ KMAi(x)

for all i and x. Let us define then

KMAi
(x) = min

i
KMAi

(x).
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Among all sequences Ai there exists an optimal one, and the compexity with respect to
this optimal sequence is denoted byKM(x). This complexity coincides with the logarithm
of a universal semicomputable semimeasure [=a priori probability on the binary tree].

Theorem 4. KM(x) is a minimal semicomputable [from above] function that makes
Theorem 2 true.
Therefore no further improvements of KM are possible.
Now consider the language [=set] of all functions computable with a fixed noncom-

putable sequence [oracle] α. Assume that α is complicated enough, so this set contains
the characteristic function of a universal enumerable set [0].
We can define then a relativized [языковую in the Russian original] complexity

KMα(x) replacing algorithms by algorithms with oracle α, i.e., functions from this lan-
guage.

Definition. A sequence ω is called normal if

KM((ω)n) = KMα((ω)n) +O(1).

For a finite sequence ωn we define the “normality deficiency” as

KM(ωn)−KMα(ωn).

Theorem 5. A sequence obtained by an algorithm from a normal sequence is normal
itself.

Theorem 6. Let P be a probability distribution that is defined (in a natural encoding)
by a normal sequence. Then P -almost every sequence is normal.
This theorem exhibits a law of probability theory that says that a random process

cannot produce a non-normal sequence unless the probability distribution itself is not
normal. This is a much more general law than standard laws of probability theory since
it does not depend on the distribution. Moreover, Theorem 5 shows that this law is not
restricted to probability theory and can be considered as a univeral law of nature:

Thesis. Every sequence that appears in reality (finite or infinite) has normality
deficiency that does not exceed the complexity of the description (in a natural language)
of how it is physically produced, or location etc.
It turns out that this normality law (that can be regarded as not confined to proba-

bility theory) and the law corresponding to the universal computable test together imply
any law of probability theory (not necessary computable) that can be described in the
language. Namely, the following result holds:

Theorem 7. Let P be a computable probability distribution. If a sequence ω is normal
and passes the universal computable P -test, then ω passes any test defined in our language
(i.e., every test computable with oracle α).12
Let us give one more interesting result that shows that all normal sequences have

similar structure.
Theorem 8. Every normal sequence can be obtained by an algorithm from a sequence

that is random with respect to the uniform distribution.
12In a footnote in the letter, Levin adds, “Note that for every set of measure 0 there exists a test (not

necessary computable) that rejects all its elements.”
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C.3 Letter III. This letter has no salutation. Levin recalls that he often gave notes like
this to Kolmogorov, who rarely had much time to hear lengthy explanations and
preferred something written in any case.

We use a sequence α that provides a “dense” coding of a universal [recursively] enumerable
set. For example, let α be the binary representation of [here the text “the sum of the a
priori probabilities of all natural numbers” is crossed out and replaced by the following:]
the real number 

p∈A

1

p · log2 p

where A is the domain of the optimal algorithm.
A binary string p is a “good” code for x if the optimal algorithm converts the pair

(p,K(x)) into a list of strings that contains x, and the logarithm of the cardinality of this
list does not exceed K(x) + 3 logK(x)− l(p). (The existence of such a code means that
x is “random” when n ≥ l(p).)
We say that a binary string p is a canonical code for x if every prefix of p either is a

“good” code for x or is a prefix of α, and l(p) = K(x) + 2 logK(x).
Theorem 1. Every x (with finitely many exceptions) has a canonical code p, and p

and x can be effectively transformed into each other if K(x) is given.
Therefore, the “non-randomness” in x can appear only due to some very special infor-

mation (a prefix of α) contained in x. I cannot imagine how such an x can be observed
in (extracted from) the real world since α is not computable. And the task “to study the
prefixes of a specific sequence α” seems to be very special.
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[25] Gács, Peter, On the symmetry of algorithmic information, Soviet Math. Doklady
15(5):1477–1480, 1974. Original: Гач, Петер, О симметрии алгоритмической
информации. Доклады Академии наук СССР 218(6):1265–1267, 1974. Submitted
April 9, 1974.
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